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Limitations of p-values > 0.05
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• A p>0.05 could reflect 

either no evidence for an 

effect or data insensitivity 

(i.e. low power/high 

standard error)

• Illustrative example: The 

dance of the p-value

Limitations of p-values > 0.05

Cummings (2011)
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Solution 1: Use power to determine data insensitivity 

• When power is high we can be more confident that p>0.05 reflects no 

evidence for an effect 

• When power is low there is a higher possibility of accepting the null 

when it is false i.e. that the data are insensitive 

• If we have power of 80% then the chances of a type 2 error is 20%

• But . . . one needs to specify the minimal interesting value that is 

plausible . . . and power cannot use the data themselves in order to 

determine how sensitive the data are
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Post-hoc power → p-values

Plot of observed p-values 

and observed power for 

10000 simulated studies with 

approximately 50% power 

Plot of observed p-values 

and observed power for 

10000 simulated studies with 

approximately 90% power 

http://daniellakens.blogspot.co.uk
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• Confidence intervals can indicate how sensitive the data are 

based on the very data themselves

• A confidence interval provides a set of possible population values 

consistent with the data (Cumming, 2011) 

• When we specify a null hypothesis we can specify a null region 

rather than a point value

• We can then draw four conclusions  . . . . 

Solution 2: Use confidence intervals to determine 

data insensitivity 
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1. Interval contained in the null 

region → accept the null region 

hypothesis

2. Interval outside of the null region 

→ reject the null region hypothesis

3. Upper limit of the interval is below 

the upper limit of the null region 

hypothesis → reject positive 

difference

4. Interval contains both null and 

theoretically interesting values →

data are insensitive

Four principles of inference by intervals (Dienes, 2014)
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Solution 2: Use confidence intervals to determine 

data insensitivity

Null region 0-10
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Solution 3: Bayes Factors
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Solution 3: Bayes Factors
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• Many software packages (e.g. R)

• Online calculators (e.g. Zoltan Dienes 

(http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/in

ference/Bayes.htm)

• Bayes Factor bound

Calculating a Bayes Factor

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
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• The largest Bayes factor in favour of H1 that is possible (under 

reasonable assumptions) (Sellke, Bayarri, & Berger, 2001 and Vovk, 

1993).

Bayes Factor Bound 
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1. Published effect size

2. Standard error of the published parameter

3. Specify the effects which are consistent with your theory

• Maximum plausible effect

• Plausible predicted effect

4. Choose your distribution → normal, half-normal or uniform

• NOTE: Sampling distribution of the parameter estimate is distributed 

normally → log odds instead of odds ratios

• Specific to that calculator and not to Bayes generally

Online calculator (Dienes)
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If you can specify a maximum plausible effect 

• ‘Uniform distribution’

• Between 0 (or a minimally clinically significant value) 

and a plausible upper bound

• Useful when there are constraints on measurements 

(e.g. Likert scale)

Calculating a Bayes Factor
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If you can specify a plausible predicted effect P and make a non-

directional prediction

• ‘Normal distribution’ 

• Population parameter values close to the mean are more 

plausible than others

• SD default is P/2

Calculating a Bayes Factor
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If you can specify a plausible predicted effect P and make a 

directional prediction [Most conservative → default]

• ‘Half normal distribution’ 

• Peak at 0 (no effect) with values close to 0 being plausible

• SD is typically estimated using the effect size

• Population values less than 0 are ruled out

Calculating a Bayes Factor
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• Okuyemi et al (2013) motivational interviewing (MI) 

counselling plus nicotine patch versus nicotine patch

• Outcome: verified seven-day abstinence rates

• Results: week 26 non-significant difference (OR 1.33; 95% 

CI=0.88, 2.02; p= 0.17). 

• Conclusion: “Adding motivational interviewing counselling 

to nicotine patch did not significantly increase smoking rate 

at 26-week follow-up for homeless smokers”.

Calculating a Bayes Factor - example
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• Transform odds ratio and SE to natural logarithmic 

scale
• LN(1.33)= 0.29 (2 dp)

• [LN(2.02)-LN(0.88)]/3.92= 0.21 (2 dp)

• Choose the half-normal distribution
• Meta-analysis of the use of MI for smoking cessation 

(Hettema et al, 2010)
• OR for long-term follow-up =1.35 (log odds ratio of 0.30)

Calculating a Bayes Factor - example
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• First mark the box ‘no’ next to ‘Is the distribution of 

p(population value|theory) uniform?’

Calculating a Bayes Factor - example
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Calculating a Bayes Factor - example

•You will then see a new screen with additional boxes

Standard error of your 

sample mean

Sample mean

Value 1 → one-tailed 

half normal

Value 2 → two-tailed 

normal

0 → half normal

Effect size → normal

Effect size → half normal

Effect size/2 → normal
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• We set mean to 0

• SD to our plausible expected value 

• We must also enter the standard 

error and mean of our sample

• Bayes Factor = 1.82

• The data are ‘insensitive’

Calculating a Bayes Factor - example
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• Review of RCTs reported in Addiction between Jan and June 2013 (Beard 

et al, 2016)

• 75 effect sizes and their standard errors were extracted from 12 trials

• 73% (n=55) were non-significant (p>0.05)

• 22% (n=20) were significant (p<0.05)

• Bayes Factor was calculated using a population effect derived from 

previous research

Do Bayes factors aid interpretation?
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Do Bayes factors aid interpretation?

• 76.4% of non-

significant findings 

had Bayes Factors 

between 1/3rd and 3 

→ data insensitive

• 20% of non-significant 

findings had Bayes 

Factors <1/3rd
→

support for the null 

hypothesis

Authors either decided not to discuss results where

P > 0.05, to report them as non-significant and/or to 

state that no association was found 

Figure 1: Conclusions of Bayes Factors for non-

significant findings
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Do Bayes factors aid interpretation?

Bayes Factor Interpretation

>100 Extreme evidence for the experimental hypothesis

30-100 Very strong evidence for the experimental hypothesis

10-30 Strong evidence for the experimental hypothesis

3-10 Moderate evidence for the experimental hypothesis

1-3 Anecdotal evidence for the experimental hypothesis

1 No evidence

1/3-1 Anecdotal evidence for the null hypothesis

1/3-1/10 Moderate evidence for the null hypothesis

1/10-1/30 Strong evidence for the null hypothesis

1/30-1/100 Very strong evidence for the null hypothesis

<1/100 Extreme evidence for the null hypothesis

Table 1: Jeffreys’ Bayes Factor cut-offs Evidence for alternative hypothesis 

Data insensitive

Evidence for 

the null 

hypothesis
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Do Bayes factors aid interpretation?

Figure 2: Conclusions of Bayes Factors for significant and non-significant findings

Bayes Factor Interpretation

>100 Extreme evidence for the experimental hypothesis

30-100 Very strong evidence for the experimental hypothesis

10-30 Strong evidence for the experimental hypothesis

3-10 Moderate evidence for the experimental hypothesis

1-3 Anecdotal evidence for the experimental hypothesis

1 No evidence

1/3-1 Anecdotal evidence for the null hypothesis

1/3-1/10 Moderate evidence for the null hypothesis

1/10-1/30 Strong evidence for the null hypothesis

1/30-1/100 Very strong evidence for the null hypothesis

<1/100 Extreme evidence for the null hypothesis

Table 1: Jeffreys’ Bayes Factor cut-offs

P
ercen

tage (%
)



School for Public Health Research

Conclusion

• A sensitive result is never guaranteed with high power 

• Power is helpful in finding rough No. of observations needed

• Sensitivity can be guaranteed with intervals and Bayes factors

• Collect data until:

• a) The interval is smaller than the null region and is either 

in or out of the null region

• b) Until the Bayes factor is either >3 or <1/3rd

• Bad practice to not have fixed stopping rules in Frequentist 

statistics
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Conclusion

• Bayes Factors are most sensitive to the maximum, which 

could be specified reasonably objectively. 

• Inference by intervals is completely dependent on 

specification of the minimum, which is often hard to specify 

objectively.
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Conclusion

• p>0.05 and B > 0.33 → avoid use of terms such as ‘no 

difference’ or ‘lack of association’

• p>0.05 and B < 0.33 → can use terms such as ‘no difference’ 

or ‘lack of association’

• If you do not calculate a B → ‘The findings were inconclusive

as to whether or not a difference/association was present’

• Should pre-register analysis plan with effect size (e.g., Open 

Science Framework)



School for Public Health Research

Things to note

• Bayes can be criticized for being too subjective as it relies on 

“priors” 

• Posterior odds = BF × prior odds 

• We have lifted the Bayes factor out of full Bayesian 

schema → represents a measure of strength of evidence

• There are many ways of being a Bayesian and they are not 

exclusive (e.g. Kruschke (2010) & Lee and Wagenmakers

(2014))

• Aim here is to make the minimal changes to current 

practice
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