An examination of compensatory puffing and variation in mood during naturalistic e-cigarette usage

Kyle Brown (PhD), Ian Perry-Griffiths (BSc Hons) Birmingham City University, Birmingham, UK

Background

Smoking topography¹, refers to the manner in which individuals inhale e-cigarette vapour

Laboratory examinations of "vaping" topography evidences the occurrence of compensatory puffing², where users increase their rate and duration of inhalation to compensate for e-liquids with low levels of nicotine

Increased puff topography is potentially harmful due to decomposition of carbonyl compounds³

Aims

Pilot study (N = 20) observing compensatory puffing during naturalistic ad libitum vaping outside of the laboratory in experienced users

Establish whether nicotine strength and/or puff count are associated with self-reported dependence, withdrawal symptoms and craving

Method

<u>Design</u>: Quasi experimental design based on "normal" e-liquid usage of varying strengths (<8mg, 9–16mg and >17mg)

Inclusion criteria: Exclusive (3+ months) and experienced (12+ months) ex-smokers aged between 18-60.

<u>Self-report</u>: Dependence (Fagertstrom test for Nicotine Dependence⁴); Craving/Withdrawal (Mood and Physical Symptoms scale⁵)

<u>Outcomes</u>: Puff count (during ad libitum e-cigarette usage for 7 days). Recorded using a third generation Bluetooth enabled Joyetech device

Results

No differences in puff count, e-liquid usage and self-reported dependence, craving & withdrawal over 7 days (e.g. Figure 1)

Relationship between self-reported variables and overall puff count, F[4, 17] = 3.73, p = .031 (Table 1), but no individual effects

- High amount of shared variance
- Partial correlations reveal nicotine strength as strongest predictor

		R	SF(R)	ß	1.	n	P.
Stop 1		Ъ	SL(D)	Ρ	14	P	Lanc
Step 1	MDSS (Mand)	14.12	7.40	0.42	1.01	00	47
	MPSS (Mood)	14.15	7.40	0.45	1.91	.08	.47
	MPSS (Craving)	18.12	14.39	0.46	1.26	.23	.33
	Nicotine Dependence	-28.73	16.97	-0.36	-1.69	.11	43
	Daily e-liquid consumption (ml)	-10.16	30.24	-0.11	-0.34	.74	09
	\mathbb{R}^2	.53					
	Adjusted R ²	.39					
Step 2							
	MPSS (Mood)	0.88	9.64	0.03	0.09	.93	.03
	MPSS (Craving)	14.72	13.21	0.37	1.11	.29	.31
	Nicotine Dependence	-6.48	19.30	-0.08	-0.34	.74	06
	Daily e-liquid consumption (ml)	-0.69	27.95	-0.01	-0.02	.98	<01
	Nicotine Strength	-66.66	34.67	-0.58	-1.92	.08	49
	R ²	.64					
	Adjusted R ²	.50					

Outcome variable = Average puff count.

Table 1: Regression coefficients, inferential statistics and partial correlations for the predictor variables.

Discussion

Tentative evidence for compensatory puffing (potentially via subjective craving & withdrawal)

Switch to lower nicotine strength (for cessation) may not reduce amount smoked over long term

Limitations

Randomisation or within naturalistic design preferable Unfamiliar e-cigarette device for users Lacks information on wattage Lacks objective test of nicotine volume

References

- 1. De Jesus S. Smoking Topography BT Encyclopedia of Behavioral Medicine. In: Gellman M, Turner JR, eds. New York, NY: Springer New York; 2017:1-2. doi:10.1007/978-1-4614-6439-6_101913-1
- 2. Cox S, Kośmider L, McRobbie H, et al. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure. BMC Public Health. 2016;16(1):999. doi:10.1186/s12889-016-3653-1
- 3. Farsalinos KE, Poulas K, Voudras V. Changes in puffing topography and nicotine consumption depending on the power setting of electronic cigarettes. 2017; (December):1-5. doi:10.1093/ntr/ntx-219/4318827/Changes-in-puffing-topography-and-nicotine
- 4. Lynne D, John T, Amanda R, Kirstie S. "Vaping" profiles and preferences: an online survey of electronic cigarette users. Addiction. 2013;108(6):1115-1125. doi:10.1111/add.12150
- 5. West R, Hajek P. Evaluation of the mood and physical symptoms scale (MPSS) to assess cigarette withdrawal. Psychopharmacology (Berl). 2004;177(1-2):195-199. doi:10.1007/s00213-004-1923-6